钛酸铋钠基弛豫铁电陶瓷储能性能研究

西安交通大学
Relaxor ferroelectric
Energy storage
Ferroelectric
XJTU
Author
Published

Monday, June 12, 2023

Important

This project is originally written in Chinese with only the English version of abstract available.

Abstract

Dielectric capacitors are widely used in various fields. With the increasing requirements for their energy storage density and environmental friendliness, it is of great significance to develop new lead-free energy storage ceramic materials. In this work, sodium bismuth titanate (BNT) is used as the matrix, relying on its high Curie temperature and strong polarization ability, and two-step modification of \(\ce{Sr(Ti_{0.75}Zr_{0.25})O3}\) (STZ) solid solution and \(\ce{Bi(Mg2/3Nb1/3)O3}\) (BMN) doping is used to construct a ternary system of bismuth sodium titanate-based lead-free ceramic materials for energy storage. These methods are used in an attempt to reduce the remanent polarization of the material, increase the breakdown voltage, and enhance the temperature stability of its energy storage performance (ESP).

The specific work contents of the thesis are as follows:

  • \(\ce{(1-x) BNT {-} x STZ}\) (\(x\)=0.10, 0.15, 0.20, 0.25) ferroelectric ceramic materials are prepared in this step, and the suitable sintering temperature is around to . Through various characterization methods, the structure, dielectric and ferroelectric properties of the material are analyzed. The XRD diffraction pattern shows that the \(\ce{Sr^{2+}} and \ce{Zr^{4+}}\) can enter into the ceramic perovskite crystal structure. With STZ content increases, the average grain size (AGS) decreases rapidly, the dielectric temperature spectrum tends to be flat, \(T_\text{d}\) and \(T_\text{m}\) decrease, \(\gamma\) gradually increases, and the hysteresis loop becomes thin and long , The \(P_\text{r}\) decrease rapidly, the symmetry of the electric strain curve becomes better, the negative strain gradually disappears, and the system approaches from the ferroelectric to the relaxor ferroelectric.

  • \(\ce{(1-y) ( 0.8 BNT {-} 0.2 STZ )} {-} y BMN\) (\(y\)=0.02, 0.04, 0.06, 0.08) are synthesized in this step, and a series of properties of the material were tested. The introduction of BMN can further refine the grains and increase the density, the dielectric temperature spectrum is flattened and broadened, \(P_\text{m}\) and \(P_\text{r}\) further decrease, and the electric The hysteresis loop is further thinned, and the current peak of the \(I\)-\(E\) curve becomes less obvious. In the \(y\) = 0.06 component, the AGS reaches the smallest, \(W_\text{rec}\) reaches the highest ( \(\qty{1.95}{J/cm^3}\) ) with a good efficiency ( \(\qty{74.65}{\percent}\) ) under \(\qty{140}{kV/cm}\) ,
    and at \(\qty{30}{\degreeCelsius}\) to \(\qty{150}{\degreeCelsius}\), the temperature stability of ESP is excellent; the damped pulse discharge test is carried out under \(\qty{100}{kV/cm}\), and \(W_\text{discharge}\) is about , and \(t_\text{0.9}\) is about \(\qty{1.2}{\micro \second}\) ,which shows a relatively excellent level and has practical application potential.

摘要

介质电容器在各个领域都有着广泛的应用,随着对其储能密度、环境友好越来越高的要求,开发新的无铅储能陶瓷材料有着重要的意义。 本文以钛酸铋钠铁电陶瓷(即 \(\ce{(Bi_{0.5}Na_{0.5})TiO3}\) ,简称BNT)为基体,依靠其居里温度高、极化能力强的特点, 使用 \(\ce{Sr(Ti_{0.75}Zr_{0.25})O3}\) (简称STZ)固溶和 (简称BMN)掺杂两步改性, 构建了三元体系的BNT基无铅储能陶瓷材料, 以试图降低材料的剩余极化强度 \(P_\text{r}\) 、提升击穿场强 \(E_\text{b}\) 、增强其储能性能的温度稳定性, 以期获得较好的储能性能。

全文具体工作内容有: - 制备了不同固溶组分的 \(\ce{(1-x) BNT {-} x STZ}\) (\(x\)=0.10, 0.15, 0.20, 0.25) 铁电陶瓷材料, 探索出了该组分陶瓷材料的合适烧结温度在 \(\qty{1130}{\degreeCelsius}\)\(\qty{1150}{\degreeCelsius}\) 附近,且烧结温度窗口较宽,通过多种表征手段, 分析了材料的结构、形貌、介电性能和铁电性能。X射线衍射(XRD)图谱表明,STZ组分的 \(\ce{Sr^{2+}}\)\(\ce{Zr^{4+}}\) 可以进入陶瓷钙钛矿晶体结构中,与BNT基体实现充分固溶。 与STZ固溶后,晶粒尺寸得以细化,平均晶粒尺寸 (AGS) 迅速减小,介电常数 - 温度曲线趋于平坦,\(T_\text{d}\)\(T_\text{m}\) 降低,弥散系数 \(\gamma\) 逐渐增加, 电滞回线变得细而长、剩余极化 \(P_\text{r}\) 和矫顽场 \(E_\text{c}\) 迅速减小,电致应变曲线的对称性变好、负应变逐渐消失,体系从铁电体向弛豫铁电体靠近。 %
在前步工作的基础上,制备了 $\ce{(1-y) ( 0.80 BNT {-}  0.20 STZ )  {-} y BMN}$ ($y$=0.02,  0.04, 0.06, 0.08) 陶瓷材料,
并对材料的结构、形貌,介电弛豫特性、铁电性能、储能性能的温度稳定性以及脉冲放电特性进行了测试。
掺杂组分BMN的引入可以进一步细化晶粒、提升致密度,材料的 $T_\text{d}$ 缓慢降低、 $T_\text{m}$ 升高,介电常数-温度曲线被压平和展宽,
最大极化 $P_\text{m}$ 和剩余极化 $P_\text{r}$ 进一步下降,电滞回线进一步纤细化,$I$-$E$曲线的电流峰变得不明显。
在 $y$ = 0.06 组分中,平均粒径达到最小,在 $\qty{140}{kV/cm}$ 测试电场下,有效储能密度 $W_\text{rec}$ 达 $\qty{1.95}{J/cm^3}$ ,储能效率 $\eta$ 为 $\qty{74.65}{\percent}$,
且在 $\qty{30}{\degreeCelsius}$ 至 $\qty{150}{\degreeCelsius}$ 之间,温度稳定性优秀;在  $\qty{100}{kV/cm}$ 测试电场下进行过阻尼脉冲放电测试,
该组分材料可释放能量密度约为 $\qty{1.2}{J/cm^3}$,$t_\text{0.9}$ 约等于 $\qty{1.2}{\micro \second}$ ,表现出较优异的水平,有一定的实际应用潜力。

Citation

BibTeX citation:
@online{liu2023,
  author = {Liu, Wenyu},
  title = {钛酸铋钠基弛豫铁电陶瓷储能性能研究},
  date = {2023-06-12},
  url = {https://wenyuliu.ch/blog/2023/06/钛酸铋钠基弛豫铁电陶瓷储能性能研究/},
  langid = {en}
}
For attribution, please cite this work as:
Liu, Wenyu. 2023. “钛酸铋钠基弛豫铁电陶瓷储能性能研究.” June 12, 2023. https://wenyuliu.ch/blog/2023/06/钛酸铋钠基弛豫铁电陶瓷储能性能研究/.